

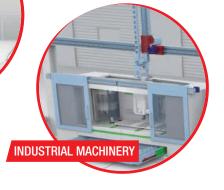
General catalogue

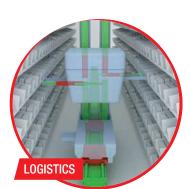
English

Interactive catalogs on: www.rollon.com

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization




ROBOTICS

For over 40 years, Rollon has adopted an approach entailing responsibility and ethics in the design and production of our linear motion solutions for different industrial sectors. The reliability of an international technology group has now been combined with the availability of a local support and service network

VALUES

Rollon's goal is to help our clients become more competitive in their markets through technological solutions, design simplification, productivity, reliability, duration, and low maintenance. PERFORMANCE

COLLABORATION

High-level technical consulting and cross-competence allow us

to identify the needs of our clients

Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applica-

MEDICAL

and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications. **SOLUTIONS APPLICATIONS**

tions is an expression of our technology and competence. INTERIORS AND ARCHITECTURE

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails

Linear Line

Linear and curved rails with ball and roller bearings, with hardened raceways, high load capacity, self-alignment, and capable of working in dirty environments.

Telescopic Line

Telescopic rails with ball and roller bearings, with hardened raceways, high load capacities, low bending, resistant to shocks and vibrations. For partial, total or extended extraction up to 200% of the length of the guide.

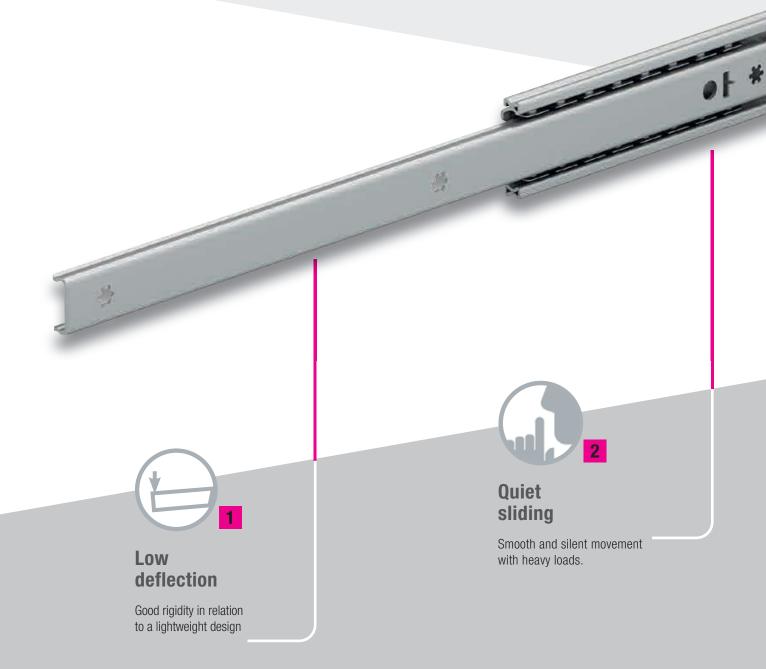
Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

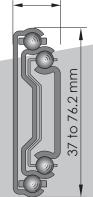
Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.


Light Rail

1 Product explanation Light telescopic rails, with full or partial extension	LR-2
2 Overview product cross sections Partial extension guides Full extension guides	LR-4
3 Technical data Performance characteristics and notes	LR-5
4 Dimensions and load capacity LRS 37 LFS 46 LRS 56 LRS 71 LRS 76	LR-6 LR-7 LR-8 LR-9 LR-10
5 Technical instructions Load capacities, Overall dimension Alignment, Stroke tolerance, Distances Fixations, Load capacity Abnormal loads / vibrations, Anticorrosion treatments, Lubrication, Speed, Temperature Installation instructions	LR-11 LR-12 LR-13 LR-14 LR-15
Ordering key Ordering key with explanations	LR-16

New Light Rail

A renewed range of rolled steel telescopic rails with light structure and full or partial extension: **4 main advantages**


Low maintenance

Lubricated with heavy duty ball bearing grease based on mineral oil.

2222222

13.5 to 19.1 mm

7

Space saving

Compact overall dimensions make them ideal for medium and lightweight drawers.

Structural elasticity capable of absorbing minor impacts.

Product explanation $\parallel \checkmark$

Light telescopic rails with full or partial extension

Light Rail is the product family of lightweight telescopic rails with full and partial extension, ideal for applications in which the mass of the rail is just as important as the bending rigidity.

End stoppers allow smooth and quiet operation even with heavy loads applied and avoid permanent distortion in case of eventual shocks.

Different options are available depending on the rail size (e.g. locking systems in open and/or closed position) and further customizations (eg. lengths, strokes) are possible.

The Light Rail product family is available in 5 sizes (37-46-56-71-76) and features partial or full extension, with a wide range of use that spans from light-duty applications, such as kitchen drawers or office furniture, to more demanding ones in industrial automations or special vehicles.

The most important characteristics:

- Light and quiet running
- Long service life with low maintenance
- High reliability
- Structural elasticity capable of absorbing minor impacts and absence of permanent deformation
- Not sensitive to side impacts

Preferred areas of application:

- Beverage industry
- Automotive
- Construction and machine technology (e.g., housing)
- Packaging machines
- Railcars (e. g., maintenance and battery extensions)
- Special machines

Partial extension telescopic rail made of cold rolled, low carbon steel, interconnected with a ball bearing cage and treated with corrosion resisting zinc-plating ISO 2081 with blue passivation. It features end stoppers which reduce noise function, and is ideal for light-duty applications such as kitchen and bathroom drawers as well as office furniture.

LFS 46

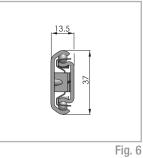
Full extension telescopic rail with detachable internal element, which can be released with a latch. Rails are made of steel, the ball cages of steel and plastic. Roll back protection in closed position.

LRS 56 - 71

Full extension telescopic rail made of cold rolled, low carbon steel rails interconnected with ball bearing cages and treated with corrosion resisting zinc-plating ISO 2081 with blue passivation. It features end stoppers with hold closed which reduces noise function and prevents the guide from opening by itself in closed position.

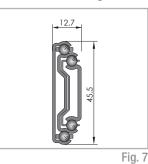
LRS 76

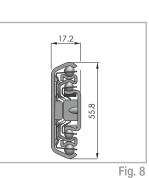
Full extension telescopic rail made of cold rolled, low carbon steel rails interconnected with ball bearing cages and treated with corrosion resisting zinc-plating ISO 2081 with blue passivation.



R

Overview product cross sections // ~


Partial extension guides



LRS37

Load capacities p. LR-6

Full extension guides

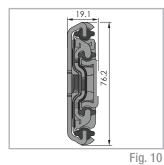
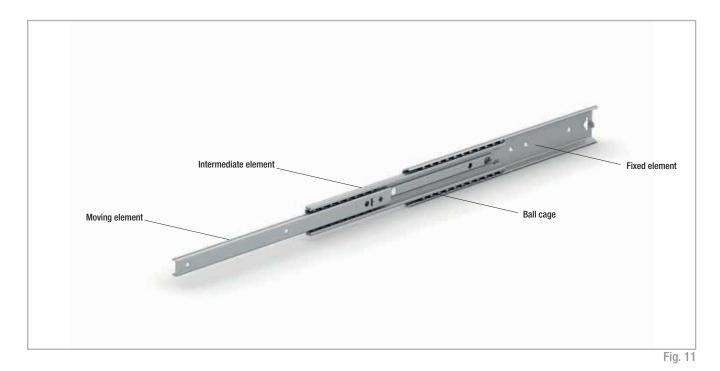

18.4 6'02

Fig. 9

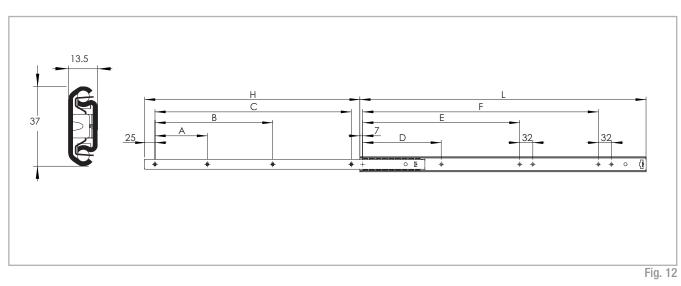
LFS46 Load capacities p. LR-7


LRS56 Load capacities p. LR-8

LRS76 Load capacities p. LR-10

Technical data //

Performance characteristics:

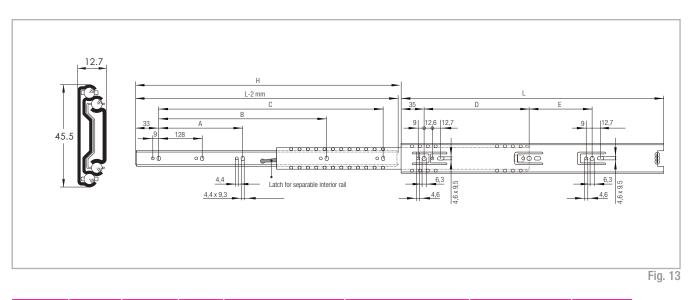

- Extension speed (depending on application): Extension distance 100 - 500 mm: max. 0.5 m/s (19.69 in/s) Extension distance 600 mm: max. 0.4 m/s (15.75 in/s) Extension distance ≥ 700 mm: max. 0.3 m/s (11.81 in/s)
- Temperature range: LRS from -20°C to +80°C (depending on the application), LFS from +10°C to +40°C (depending on the application).
- All systems are lubricated with heavy duty ball bearing grease based on mineral oil.
- Rail material: cold rolled, low carbon and high yield strength steel.
- Ball cages material: electrolitically galvanized steel or plastics.
- Ball bearings material: hardened carbon steel.

Remarks:

- All load capacity data are based on a pair of telescopic rails
- Horizontal movement installation is recommended
- All strokes are subject to a general tolerance of ± 4 mm.
- Vertical movement installation on request, please contact our Technical Department.
- Assembly in cross-sectional width, here a positive tolerance of +0.5 mm is recommended (mounted under tension). If the extensions are installed with too small tolerances, the service life is decreased
- Cycle data applies to the use of an extension pair (recommended)
- Vertical use of extensions (radial load) is recommended
- Not suitable for moments must be used in pair
- For alternative and specialized finishings, please contact our technical department.
- Customizations possible (eg. lengths, strokes, hold-in, soft close bumpers, ...). Please contact our technical department.
- The existing internal stops are not designed to stop the moving load. They are only supposed to retain the ball-cage and prevent the internal parts to slide out of the assembly. An external end-stop must always be installed to stop the moving load.

Dimensions and load capacity $\parallel \sim$

LRS 37



Туре	Size	Length L	Stroke H	Load capacity f	or a pair of rails	Mo	ving elen	ient	Fix	ced eleme	ent	Weight per
		[mm]	[mm]	C _{orad} [N] 10.000 Cycles	C _{orad} [N] 100.000 Cycles	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	single guide [kg]
		300	205 780 600	600	32	96	128		192	-	0.45	
		350	239	630	490		128	160	128	224	-	0.52
		400	289	540	420	64	160	224		288	-	0.6
LRS	37	450	339	460	360		100	256		320	-	0.67
		500	373	540	420	96	192	288	160	288	384	0.7
		600	457	560	430	128	256	384	100	352	480	0.88
		700	541	560	430	128	288	480	192	384	576	1.08

Tab. 1

Note: The given load capacities are guidelines with uniform load distribution (area load) when using all mounting holes. The load values must be reduced in unfavorable conditions.

LFS 46

Туре	Size	Length L	Stroke H	Load capacity for a pair of rails	Μον	ving elen	nent	Fixed e	lement	Weight per single
		[mm]	[mm]	C _{orad} [N] 50.000 cycles	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	guide [kg]
		300	305	300		242 192 -		-	0,48	
		350	356	300	-	-	292	256	-	0,51
		400	406		-	256	342	160	96	0,64
LFS	46	450	457	350	-	200	392	100	160	0,71
		500	508		-	352	442		128	0,79
		550	559	400	224	416	492	224	192	0,88
		600	610	400	224	410	542		224	0,95
										Tab. 2

Note: The given load capacities are guidelines with uniform load distribution (area load) when using all mounting holes (at least one hole for each group must be used). The load values must be reduced in unfavorable conditions.

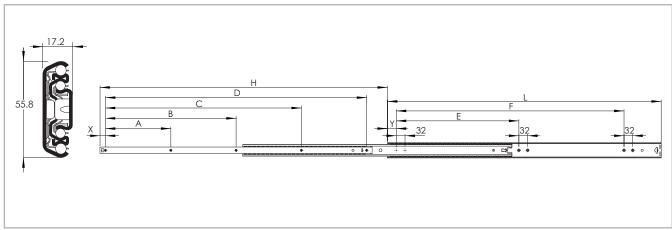
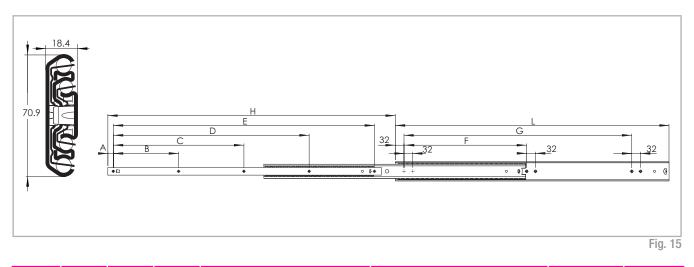
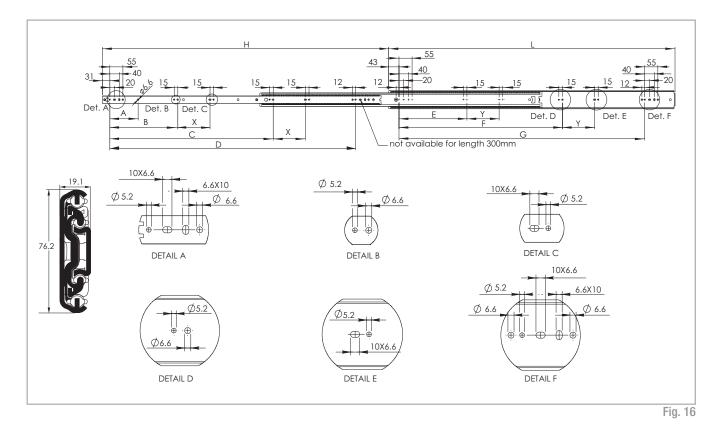



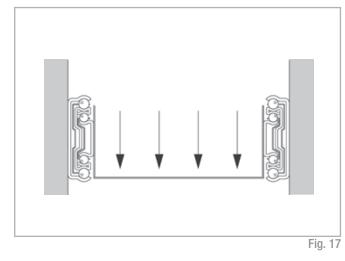
Fig. 14


Туре	Size	Length	Stroke	Load capacity f	or a pair of rails		Мо	ving ele	ment		Fi	xed elen	Weight	
		L [mm]	H [mm]	C _{0rad} [N] 10.000 Cycles			A [mm]	B [mm]	C [mm]	D [mm]	Y [mm]	E F		per single guide [kg]
	3	300	320	940	680		130	260	-	-		160	-	0.84
		350	375	960	770		155	310	-	-		160	-	0.98
	Z	400	440	970	730		180	360	-	-		192	-	1.12
		450	495	1100	830		205	410	-	-		256	-	1.26
		500	550	1190	900	20	230	460	-	-		288	-	1.42
LRS	56	550	600	1180	910		255	510	-	-	32	320	-	1.56
LNO	00	600	650	1230	970		280	560	-	-		384	-	1.70
		700	750	1290	1030		330	660	-	-		416	-	1.99
		800	848	1210	1020		251	502.5	754	-		352	640	2.25
		900	950	1050	900		285	569	854	-		384	736	2.58
		1000	1050	810	720		238.5	477	715.5	954		448	832	2.87
	1	1100	1100	720	630	50	220	425	609	922	42.5	524	914	3.15
														Tab. 3

Note: The given load capacities are guidelines with uniform load distribution (area load) when using all mounting holes. The load values must be reduced in unfavorable conditions.

Туре	Size	Length	Stroke	Load capacity f	or a pair of rails		Mov	ing eler	Fixed e	lement	Weight		
		L [mm]	H [mm]	C _{0rad} [N] 10.000 Cycles	C _{0rad} [N] 100.000 Cycles	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	per single guide [kg]
		400	435	1570	970		75	150	225	300	256	-	1.55
		450	485	1600	1030		87.5	175	262.5	350	200	-	1.75
	71	500	545	1690	1150	43	100	200	300	400	320	-	2.10
		550	595	1870	1180	43	112.5	225	337.5	450	320	-	2.40
LRS		600	650	1890	1180		125	250	375	500	416	-	2.60
LNO	/ 1	700	750	1870	1370		150	300	450	600	410	-	2.80
		800	850	2120	1470		251	502.5	754	-	352	640	3.10
		900	950	1920	1250	20	285	569	854	-	384	736	3.58
		1000	1050	1790	1080		238.5	477	715.5	954	448	832	3.95
		1100	1100	1710	1010	50	220	425	640	926	520	932	4.35
													Tab. 4

Note: The given load capacities are guidelines with uniform load distribution (area load) when using all mounting holes. The load values must be reduced in unfavorable conditions.


Туре	Size	Length		Load capacity f	or a pair of rails		Mov	ing eler	nent			Weight			
		L [mm]	H [mm]	C _{0rad} [N] 10.000 Cycles	C _{0rad} [N] 50.000 Cycles	X [mm]	A [mm]	B [mm]	CD [mm] [mm		Y [mm]	E [mm]	F [mm]	G [mm]	per single guide [kg]
		300	298	2250	1950		-	-	-	130	-	-	-	130	1.38
		400	398	2500	2100	135	118	-	-	230	135	-	-	230	1.88
		500	512	2600	2300		186	-	-	330		-	-	330	2.44
		600	610	2750	2550	170	-	185	-	430	170	185	-	430	2.96
LRS	76	700	708	2950	2800	135	-	285	-	530	135	185	-	530	3.42
LNO	70	800	806	3100	3000	170	-	285	-	630	170	285	-	630	3.88
		900	904	3200	3100	135	-	385	-	730	135	285	-	730	4.42
		1000	1000	3250	3150	170	-	385	-	830	170	385	-	830	4.9
		1200	1212	2950	2800	135	-	285	685	1030	135	285	685	1030	5.92
		1500	1504	2250	1950	100	-	385	885	1330	100	385	885	1330	7.48

Note: The given load capacities are guidelines with uniform load distribution (area load) when using all mounting holes (at least one hole for each group must be used). The load values must be reduced in unfavorable conditions. Tab. 5

Technical instructions

Load capacities

Vertical installation (radial load)

The given loading capacities are guidelines for a pair of rails vertically mounted with uniform load distribution using all mounting holes (for LFS46 and LRS76 at least one hole of each group must be used). The load values must be reduced in unfavorable conditions.

Overall dimension

When installing the rail, its nominal overall dimension relative to the side of the drawer/cabinet must be kept in mind. The overall dimension is the thickness of the rail plus 0.5 mm \pm 0.25. The thickness of the rail is measured with the ball cage in the closed position. Be sure to leave at least 5 mm of clearance behind the drawer.

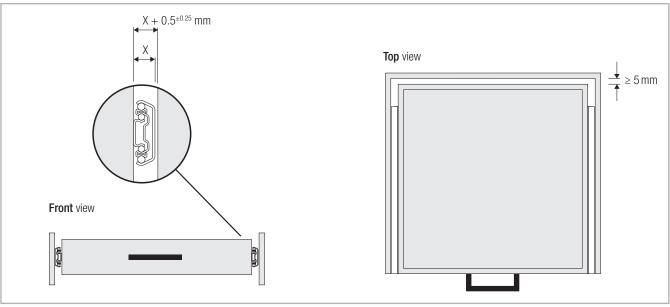
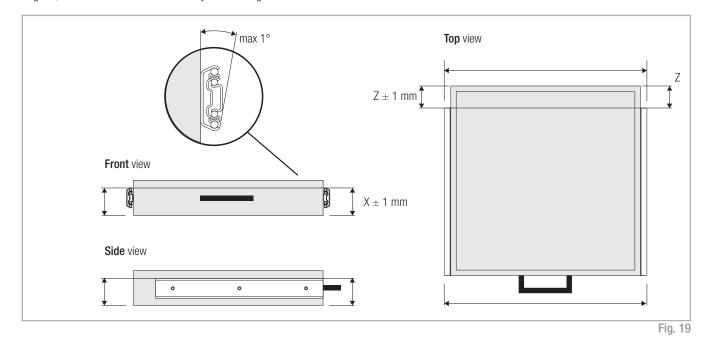
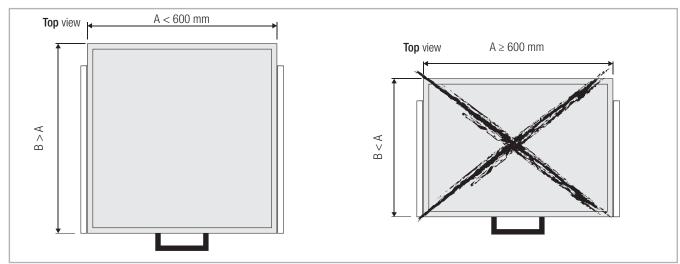



Fig. 18

R

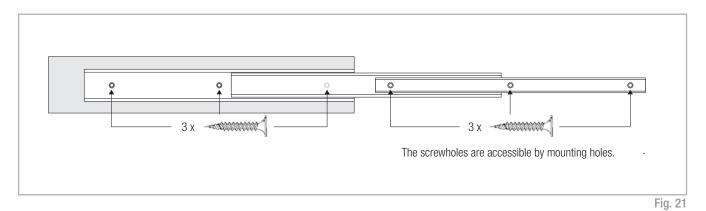
Alignment

When positioning the rails, it is important that they are aligned accurately, within the specified tolerances. The more precisely the guide rails are aligned, the smaller the chance that they will work against each other.



Stroke tolerance

The given strokes in the "Dimensions and load capacity" chapter are subject to a general tolerance of \pm 4 mm.


Distances

The pair of rails are tested at a maximum width of 600 mm. For distances wider than 600 mm, please contact our technical department.

Fixations

The rails can be mounted using a wide variety of fixations such as screw holes, mounting tabs, hanging tabs, press-in bolts, etc. When selecting screws, make sure the screw head does not protrude, so there is no contact between the moving parts of the rail and the screw head.

Туре	Size	Screw t	уре
		Moving element	Fixed element
LRS	37	Metal: M4 / DIN 965 / ISO 7046 M4 / DIN 7500 Wood: 4,5 / DIN 7997	Metal: M4 / DIN 7984 M4 / M5 / ISO 7380 Wood: 5,0 / DIN 7997
LFS	46	M4 DIN 965 / UNI 7688	M4 DIN 965 / UNI 7688
	56	Metal: M4 / DIN 965 / ISO 7046 M4 / DIN 7500 M4 / DIN 7991 / ISO 10462 Wood: 4,0 / 4,5 / DIN 7997	Metal: M5 / DIN 965 / ISO 7046 M5 / DIN 7500 Wood: 5,0 / DIN 7997
LRS	71	Metal: M4 / DIN 965 / ISO 7046 M4 / DIN 7500 Wood: 4,0 / 4,5 / DIN 7997	Metal: M5 / DIN 965 / ISO 7046 M5 / DIN 7500 Wood: 5,0 / DIN 7997
	76	Metal: M5 / DIN 7984 M5 / M6 / ISO 7380	Metal: M5 / DIN 7984 M5 / M6 / ISO 7380
			Tab. 6

Load capacity

Load capacities are specified per pair and are purely indicative. Length, application and construction of the enclosure all have an impact on the load capacity. We recommend testing based on a prototype of the final application. Only then can the proper operation, service life and safety of the application be ensured.

Static load capacity

Static load means that the load capacity of the rail is based on less than 10.000 cycles per pair.

Dynamic load capacity

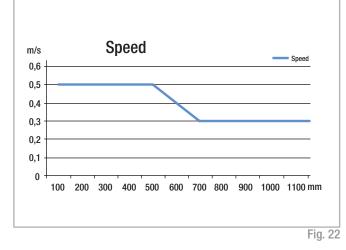
Dynamic load means that the load capacity of the rail is based up to 100.000 cycles per pair (50.000 for LFS46 and LRS76). The number of cycles affects the service life and performance. Other factors that may affect performance are:

- 1. A uniformly or unevenly distributed load
- 2. Centre of gravity of the load
- 3. The speed and/or frequency of the movement
- 4. The length of the rail relative to the extended length
- 5. The force with which the load comes against the end stop
- 6. For optimum performance, the rails must be regularly fully extended
- 7. In case of use in outdoor applications or aggressive environments, please contact our Technical Department.

Abnormal loads / vibrations

Transport, misuse and shock loads – even of short duration – may cause damage. Excessive or continuous vibration can also reduce the performance and service life of the rails.

Anticorrosion treatments


The rails have a corrosion-resistant, zinc-plated, blue-passivated finish. High humidity, salts or other chemical agents may damage the surface of metal or plastic components. Exposure to any such conditions should be avoided at all times. For more information please contact Rollon technical support.

Lubrication

To ensure optimum performance, Rollon applies grease/lubricant to the rails. Contaminants such as grime, grindings, sawdust, paint, etc. may reduce the effectiveness of the applied grease. For more information please contact our Technical Department.

Speed

The extension speed is determined by the size of the intermediate elements. Therefore, the maximum extension speed is inversely proportional to the overall extension of the rails (see fig. 22). The maximum extension speed is also directly related to the applied load and operating time. The indicated data refers to continuous operation at the maximum load capacity.

Temperature

Continual operating temperature is -20° C to $+80^{\circ}$ C for LRS and $+10^{\circ}$ C to $+40^{\circ}$ C for LFS. The temperature range may vary according to the application (duration of exposure, impact, other forces on the rail, etc). Please contact our Technical Department.

Installation instructions

- The existing internal stops are not designed to stop the moving load. They are only supposed to retain the ball-cage and prevent the internal parts to slide out of the assembly. An external end-stop must always be installed to stop the moving load.
- The rails perform best when mounted in a very rigid construction (furniture, device or installation). Do not use the rails as a structural part of a construction.
- To achieve optimum running properties, high service life and rigidity, it is necessary to fix the Light Rail extensions with all accessible holes on a rigid and level surface. Please observe the parallelism of the installation surfaces. The fixed and movable rails fit to the rigid assembly construction.
- Light Rail full and partial extensions are suitable for use in automatic systems. For this, the stroke should remain constant in all moving cycles and the extension speed must be checked (see pg. LR-22, fig.22). The movement of the extensions is enabled by internal ball cages, which could experience an offset from the original position with differing strokes. This phase offset can have a negative effect on the running properties or limit the stroke. If differing strokes occur in an application, the drive force must be sufficiently dimensioned in order to appropriately synchronize the ball cage offset. As an alternative, an extra full stroke cycle can be performed every certain number of cycles, in order to re-phase the ball cage in its correct position.

Ordering key // 🗸

Light Rail

>

-					
LRS	71-	400			
		Rail length in mm	see from pg. LR-9		
	Size se	ee from pg. LR-9			
Rail type	see from	pg. LR-9			

Ordering example: LRS71-0400

Notes on ordering: The rail lengths are always indicated as 4 digits with 0 prefixes

											_			
			_											
														$\left \right $
														 $\left - \right $
														$\left \right $

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.com - infocom@rollon.com

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rollon.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

V

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.

ROLLON GmbH - GERMANY


Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

ROLLON - SOUTH AMERICA

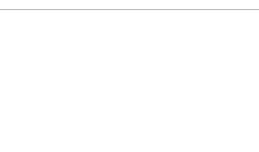
101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rollon.com - info@rolloncorp.com

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

• Distributors

Rollon Branches & Rep. Offices

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr



3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp

Distributor

v

v

